Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration
نویسندگان
چکیده
Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m2), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m2; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m2), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m2; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor's performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its possible role in maintaining functional stability of MECs fed with low and high concentrations of acetate and propionate. Taken together, these results provide new insights on the microbial community dynamics and its correlation to performance in MECs fed with different concentrations of acetate and propionate, which are important volatile fatty acids in wastewater.
منابع مشابه
Modeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions
Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...
متن کاملSet anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells
Anode potential has been shown to be a critical factor in the rate of acetate removal in microbial electrolysis cells (MECs), but studies with fermentable substrates and set potentials are lacking. Here, we examined the impact of three different set anode potentials (SAPs; -0.25, 0, and 0.25 V vs. standard hydrogen electrode) on the electrochemical performance, electron flux to various sinks, a...
متن کاملHigh Levels of Monensin to Mid Lactating Dairy Cows: Nutrient Digestibility, Ruminal Fermentation and Microbial Protein Synthesis
The aim of this study was to evaluate the nutrient digestibility, ruminal fermentation and microbial protein synthesis of mid-lactating cows fed high dietary levels of monensin. Twelve Holstein cows were distributed into four 3 × 3 latin squares and assigned to the following treatments: control (CON), monensin 24 (M24, addition of 24 mg monensin/kg diet DM) and monensin 48 (M48, addition of 48 ...
متن کاملSimultaneous use of thyme essential oil and disodium fumarate can improve in vitro ruminal microbial fermentation characteristics
Two trials were conducted to investigate the effects of disodium fumarate (DSF; 0.00, 8.00, 10.00 and 12.00 mM) and thyme essential oil (TEO; 0.00, 100.00, 200.00, 300.00 and 400.00 µL L-1) solely and simultaneously (10.00 mM DSF along with 100.00, 200.00, 300.00 and 400 µL L-1 TEO) on in vitro ruminal fermentation of a 50:50 alfalfa hay to concentrate diet. The D...
متن کاملEffects of Thyme Essential Oil and Disodium Fumarate on Ruminal Fermentation Characteristics, Microbial Population and Nutrient Flow in a Dual Flow Continuous Culture System
The aim of the present study was to investigate the effects of di-sodium fumarate (DSF) and thyme essential oil (TEO) solely and simultaneously on ruminal fermentation properties and microbial abundance. A dual-flow continuous culture system (DFCC) with eight 1400-mL fermenters was used in a period of 12 d that divided to 9 d for adaptation and 3 d for sampling. Fermenters were fed 100 g d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017